skip to main content


Search for: All records

Creators/Authors contains: "Katiphanliam, K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Chemical engineers frequently contribute to the advancement of the medical field; however, such applications are often not covered in the undergraduate curriculum until third- or fourth-year electives. We propose implementing a hands-on learning tool in an elective third- and fourth-year course and core third-year separations class to help undergraduate students apply chemical engineering concepts to biomedical applications. The hands-on learning tool of interest is used to introduce students to blood separation principles through a microbead settling device. See-through columns are filled with fluid and microbeads at various ratios to model the effect of hematocrit, or red blood cell fraction, on cell settling velocities and separation efficiencies. We hypothesize that the use of a biomedical hands-on learning tool will result in motivational and conceptual gains in comparison to traditional lecture and have significant effects on underrepresented minority groups in the class. Pre- and posttests will be used to assess conceptual understanding of separations principles with respect to biomedical applications across hands-on and lecture groups. Additionally, motivational surveys will be used to gauge levels of interactivity between the two groups, relating to the ICAP hypothesis. We plan to conclude the paper submission and presentation with theoretical and practical implications of our findings from Spring 2022 implementations. 
    more » « less